

LHC Limits, Anomalies, Discoveries

J.-F. Arguin, R.M. Barnett (LBNL) November 19-20, 2010

1

Introduction

• LHC: a new era of particle physics

- Largest center-of-mass increase in ~40 years
- First detailed survey of TeV scale (where we have reasons to expect new physics)
- Can revolutionize PDG and RPP! → need to be prepared
- What should we prepare for?
 - Limits
 - First signals
 - Discoveries

Disclaimers:

- Form of new physics is unknown → some amount of speculation in this talk
- Reminder: PDG doesn't decide when something has been discovered, the HEP community does
 - Close relationship with community will be crucial (e.g. experiments working groups)

Limits

- In principle, there could be no change in the work qualitatively, just quantitatively!
 - -Number of searches expected to increase in the coming few years
 - -Need to make sure we stay up-to date with developments in new theoretical models
- However, this could be an opportunity to make our handling of new physics searches as useful as possible (in particular to theorists)
 - -Suggestion we received: keep a database of papers containing limits based on **signatures** (e.g. multijets+missing energy, dilepton resonance, etc)

First Signals

- Hopefully, an excess over SM background will eventually show up!!
- Is it Higgs or something else? (e.g. diphoton resonance)
 - → hopefully can be resolved "quickly"
 - -E.g. consistency in mass and branching ratio in > I channels (maybe Tevatron+LHC), consistency with EWK precision fits
- Otherwise, it will take sometime before we can identify the nature of the signal with confidence
- Proposal: will have new review(s) that discuss LHC first signals (and maybe their possible theoretical interpretations)

Example Scenarios

- Scenario I: Large dilepton invariant mass peak around I TeV (>> 5 σ)
- What should we call it? Is it a sneutrino (S=0), a Z' (S=1) or a KK graviton excitation (S=2)?

- Scenario 2: Large excess of leptons, missing E_T and jets
- "Beyond the SM look-alikes": SUSY, universal extra-dimensions, little Higgs, etc
- Rich phenomenology and set of signatures: could take many years to figure out the correct model
- In some cases: maybe new lepton colliders

5

Discovery: Scenario 2

What should PDG do?

- Possibility I: keep discussion in LHC anomaly review until the matter is resolved
 - Scenario I: find other signatures, like other SUSY-like particles, which leads to a consensus within the community
 - Scenario 2: could take several editions!
- Possibility 2: include the encoding in the listing generally favored by the community until we have more information
 - For example Z' for scenario I and SUSY for scenario 2
- Possibility 3: include encoding in all relevant listings and remove when models are excluded
 - Ex.: heavy gauge bosons + SUSY + extra-dimensions for scenario I
- Possibility 4: create listings with neutral names of newly found particles until the matter is resolved

Conclusions

- LHC: a new era for particle physics AND PDG!
- What to prepare for:
 - Many limits
 - Hopefully discoveries!
 - LHC anomalies review(s) that will contain initial signals and possible theoretical interpretations
 - Handling of listings will depend on community consensus
- Intercommunication with HEP community will be crucial!
 - Need to collaborate early on with experiment working groups, like newly formed LHC Higgs Combination Group (e.g. fit using PDG rules like using only published data)